Tích các nghiệm của phương trình x^2 + 2 căn bậc hai (x^2 - 3x + 11)

Câu hỏi :

Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là


A. 1;



B. 2;



C. –2;



D. 4.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: B

Ta có x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 \( \Leftrightarrow \) x2 – 3x + 11 + 2\(\sqrt {{x^2} - 3x + 11} \) – 15 = 0

Đặt \(\sqrt {{x^2} - 3x + 11} \) = t (t ≥ 0)

Phương trình trở thành t2 + 2t – 15 = 0 \( \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = - 5\end{array} \right.\)

Kết hợp với điều kiện t = 3 thoả mãn

Với t = 3 ta có \(\sqrt {{x^2} - 3x + 11} \) = 3

\( \Rightarrow \) x2 – 3x + 11 = 9

\( \Rightarrow \) x2 – 3x + 2 = 0

\( \Rightarrow \) x = 2 hoặc x = 1

Thay lần lượt các nghiệm trên vào phương trình, ta thấy x = 1 và x = 2 thoả mãn

Tích các nghiệm của phương trình là 1.2 = 2

Copyright © 2021 HOCTAP247