Tổng các nghiệm của phương trình căn bậc hai (x + 3) + căn bậc hai (6 - x)

Câu hỏi :

Tổng các nghiệm của phương trình \(\sqrt {x + 3} + \sqrt {6 - x} = 3 + \sqrt {(x + 3)(6 - x)} \) (*) là


A. 1;



B. 2;



C. 3;



D. 4.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

Đặt \(\sqrt {x + 3} + \sqrt {6 - x} = t\) (t > 0) \( \Leftrightarrow \) x + 3 + 6 – x + \(2\sqrt {(x + 3)(6 - x)} \) = t2

Ta có \(\sqrt {(x + 3)(6 - x)} = \frac{{{t^2} - 9}}{2}\)

Phương trình (*) trở thành t = 3 + \(\frac{{{t^2} - 9}}{2}\)

\( \Leftrightarrow \) t2 – 2t – 3 = 0

\( \Leftrightarrow \) t = – 1 hặc t = 3

Kết hợp với điều kiện t = 3 thoả mãn

Với t = 3 ta có \(\sqrt {x + 3} + \sqrt {6 - x} = 3\)

\( \Rightarrow \) x + 3 + 6 – x + \(2\sqrt {(x + 3)(6 - x)} \) = 9

\( \Rightarrow \)\(\sqrt {(x + 3)(6 - x)} \)= 0

\( \Rightarrow \) – x2 + 3x + 18 = 0

\( \Rightarrow \)x = 6 hoặc x = – 3

Thay lần lượt các nghiệm trên vào phương trình, ta thấy x = 6 và x = – 3 thoả mãn

Tổng các nghiệm của phương trình là 6 + (– 3) = 3.

Copyright © 2021 HOCTAP247