Với n là số nguyên dương thỏa mãn C 1 n + C 2 n = 10, hệ số chứa x^2

Câu hỏi :

Với n là số nguyên dương thỏa mãn \(C_n^1 + C_n^2 = 10\), hệ số chứa x2 trong khai triển của biểu thức \({\left( {{x^3} + \frac{2}{{{x^2}}}} \right)^n}\) bằng


A. 36;



B. 10;



C. 20;



D. 24.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

Ta có \(C_n^1 + C_n^2 = 10\)

\( \Leftrightarrow \frac{{n!}}{{1!(n - 1)!}} + \frac{{n!}}{{2!(n - 2)!}} = 10\)

\( \Leftrightarrow \frac{{n(n - 1)...1}}{{(n - 1)...1}} + \frac{{n(n - 1)(n - 2)...1}}{{2(n - 2)...1}} = 10\)

\( \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 10\)

\( \Leftrightarrow \)n2 + n – 20 = 0\( \Leftrightarrow \left[ \begin{array}{l}n = 4\\n = - 5\end{array} \right.\)

Kết hợp với điều kiện n = 4 thoả mãn bài toán.

Nhị thức \({\left( {{x^3} + \frac{2}{{{x^2}}}} \right)^n}\)

Ta có công thức số hạng tổng quát trong khai triển (a + b)n\(C_n^k\)an – k .bk (k ≤ n)

Thay a =x3, b = \(\frac{2}{{{x^2}}}\) vào trong công thức ta có

\(C_4^k\)(x3)4 – k .\({\left( {\frac{2}{{{x^2}}}} \right)^k}\)  = (2)k\(C_4^k\) (x)12 – 5k

Số hạng cần tìm hệ số chứa x2  nên ta có 12 – 5k = 2

Do đó k = 2 thoả mãn bài toán

Vậy hệ số của số hạng chứa x2 trong khai triển là: (2)2\(C_4^2\) = 24.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Bài 3. Nhị thức Newton có đáp án !!

Số câu hỏi: 15

Copyright © 2021 HOCTAP247