Cho ∆ABC thỏa mãn sin A = sin B + sin C/cos B + cos C. Khi đó ∆ABC là: A. Tam giác vuông; B. Tam giác cân; C. Tam giác tù; D. Tam giác đều.

Câu hỏi :

Cho ∆ABC thỏa mãn \[\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}\]. Khi đó ∆ABC là:

A. Tam giác vuông;

B. Tam giác cân;

C. Tam giác tù;

D. Tam giác đều.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đáp án đúng là: A

• Theo hệ quả của định lí côsin, ta có:

\(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)\(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\).

• Theo hệ quả định lí sin, ta có:

\(\sin A = \frac{a}{{2R}};\,\,\sin B = \frac{b}{{2R}};\,\,\sin C = \frac{c}{{2R}}\).

• Ta có \[\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}\]

sinA(cosB + cosC) = sinB + sinC

\( \Leftrightarrow \frac{a}{{2R}}.\left( {\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} + \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}} \right) = \frac{b}{{2R}} + \frac{c}{{2R}}\)

\( \Leftrightarrow \frac{a}{{2R}}.\frac{1}{{2a}}\left( {\frac{{{a^2} + {c^2} - {b^2}}}{c} + \frac{{{a^2} + {b^2} - {c^2}}}{b}} \right) = \frac{{b + c}}{{2R}}\)

\( \Leftrightarrow \frac{1}{2}\left( {\frac{{{a^2} + {c^2} - {b^2}}}{c} + \frac{{{a^2} + {b^2} - {c^2}}}{b}} \right) = b + c\)

\( \Leftrightarrow \frac{{b\left( {{a^2} + {c^2} - {b^2}} \right) + c\left( {{a^2} + {b^2} - {c^2}} \right)}}{{bc}} = 2\left( {b + c} \right)\)

a2b + bc2 – b3 + a2c + b2c – c3 = 2b2c + 2bc2

b3 + c3 – (a2b + a2c) + (b2c + bc2) = 0

(b + c)(b2 – bc + c2) – a2(b + c) + bc(b + c) = 0

(b + c)(b2 – bc + c2 – a2 + bc) = 0

(b + c)(b2 + c2 – a2) = 0

b + c = 0 (vô lí vì b, c > 0) hoặc b2 + c2 = a2

AC2 + AB2 = BC2

Áp dụng định lí Pytago đảo, ta được ∆ABC vuông tại A.

Vậy ta chọn phương án A.

Copyright © 2021 HOCTAP247