Cho ∆ABC, biết góc A = 60^0, hc = 2 căn bậc hai của 3, R = 6. Khẳng định nào sau đây đúng? A. a = 6 căn bậc hai của 3 ,b = 2 + 4 căn bậc hai của 6 ,c = 4; B. a = 6 căn bậc hai của...

Câu hỏi :

Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?

A. \(a = 6\sqrt 3 ,\,\,b = 2 + 4\sqrt 6 ,c = 4;\);

B. \(a = 6\sqrt 3 ,\,\,b = 4,\,\,c = 2 + 4\sqrt 6 \);

C. \(a = 6\sqrt 3 ,\,\,b = 4,c = 2 + \sqrt 6 ;\)

D. \(a = 6\sqrt 3 ,\,\,b = 2 + \sqrt 6 ,c = 4\).

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đáp án đúng là: B

Theo hệ quả định lí sin, ta có:

a = 2R.sinA = 2.6.sin60° = \(6\sqrt 3 \).

Ta có S = \(\frac{1}{2}c{h_c} = \frac{1}{2}bc\sin A\,\).

Suy ra hc = b.sinA

Do đó \(b = \frac{{{h_c}}}{{\sin A}} = \frac{{2\sqrt 3 }}{{\sin 60^\circ }} = 4\).

Theo định lí côsin, ta có a2 = b2 + c2 – 2bc.cosA

Suy ra \({\left( {6\sqrt 3 } \right)^2} = {4^2} + {c^2} - 2.4.c.\cos 60^\circ \)

Khi đó c2 – 4c – 92 = 0

Vì vậy \(c = 2 + 4\sqrt 6 \) hoặc \(c = 2 - 4\sqrt 6 \).

Vì c là độ dài một cạnh của ∆ABC nên c > 0.

Do đó ta nhận \(c = 2 + 4\sqrt 6 \).

Vậy ta chọn phương án B.

Copyright © 2021 HOCTAP247