Cho biết 2cos alpha + căn bậc hai của 2 sin alpha = 2, với 0° < α < 90°. Giá trị của cotα bằng: A. căn bậc hai của 5 /4; B. căn bậc hai của 3 /4; C. căn bậc hai của 2/2; D. căn bậc...

Câu hỏi :

Cho biết \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\), với 0° < α < 90°. Giá trị của cotα bằng:

A. \(\frac{{\sqrt 5 }}{4}\);

B. \(\frac{{\sqrt 3 }}{4}\);

C. \(\frac{{\sqrt 2 }}{2}\);

D. \(\frac{{\sqrt 2 }}{4}\).

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đáp án đúng là: D

Ta có \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\)

\[ \Leftrightarrow \sqrt 2 \sin \alpha = 2 - 2\cos \alpha \]

2sin2α = (2 – 2cosα)2

2(1 – cos2α) = 4 – 8cosα + 4cos2α

6cos2α – 8cosα + 2 = 0   (1)

Đặt t = cosα.

Vì 0° < α < 90° nên 0 < t < 1.

Phương trình (1) tương đương với: 6t2 – 8t + 2 = 0

\( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = \frac{1}{3}\end{array} \right.\)

Vì 0 < t < 1 nên ta nhận \(t = \frac{1}{3}\).

Với \(t = \frac{1}{3}\), ta có \[\cos \alpha = \frac{1}{3}\].

Suy ra \[{\cos ^2}\alpha = \frac{1}{9}\]

Áp dụng Bài tập 5a, trang 65, Sách giáo khoa Toán 10, Tập một, ta có:

sin2α + cos2α = 1

\[ \Leftrightarrow {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - \frac{1}{9} = \frac{8}{9}\].

\( \Leftrightarrow \left[ \begin{array}{l}\sin \alpha = \frac{{2\sqrt 2 }}{3}\\\sin \alpha = - \frac{{2\sqrt 2 }}{3}\end{array} \right.\)

Vì 0° < α < 90° nên α là góc nhọn.

Do đó sinα > 0.

Vì vậy ta nhận \(\sin \alpha = \frac{{2\sqrt 2 }}{3}\).

Ta có \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{3}:\frac{{2\sqrt 2 }}{3} = \frac{1}{3}.\frac{3}{{2\sqrt 2 }} = \frac{1}{{2\sqrt 2 }} = \frac{{\sqrt 2 }}{4}\).

Vậy ta chọn phương án D.

Copyright © 2021 HOCTAP247