Từ vị trí A, người ta quan sát một cái cây cao mọc vuông góc với mặt đất như hình vẽ. Biết vị trí quan sát cách mặt đất một khoảng AH = 4 m và khoảng cách từ chân đường vuông góc c...

Câu hỏi :

Từ vị trí A, người ta quan sát một cái cây cao mọc vuông góc với mặt đất như hình vẽ.

A. 17,5 m;

B. 17 m;

C. 16,5 m;

D. 16 m.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đáp án đúng là: A

Xét ∆ABH vuông tại H có \(\tan \widehat {ABH} = \frac{{AH}}{{HB}} = \frac{4}{{20}} = \frac{1}{5}\).

Suy ra \(\widehat {ABH} \approx 11^\circ 19'\).

Ta có CB BH (cái cây vuông góc với mặt đất)

Suy ra \(\widehat {CBH} = 90^\circ \).

Do đó \(\widehat {CBA} + \widehat {ABH} = 90^\circ \)

Vì vậy \(\widehat {CBA} = 90^\circ - \widehat {ABH} \approx 90^\circ - 11^\circ 19' = 78^\circ 41'\).

∆ABC có \(\widehat {CAB} + \widehat {CBA} + \widehat {ACB} = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat {ACB} = 180^\circ - \left( {\widehat {CAB} + \widehat {CBA}} \right) \approx 180^\circ - \left( {45^\circ + 78^\circ 41'} \right) = 56^\circ 19'\).

∆ABH vuông tại H nên theo định lí Pythagore ta có:

AB2 = AH2 + BH2

= 42 + 202 = 416

Suy ra AB = \(4\sqrt {26} \) (m)

Áp dụng định lí sin cho ∆ABC, ta được \(\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}}\)

Suy ra \(\frac{{BC}}{{\sin 45^\circ }} = \frac{{4\sqrt {26} }}{{\sin 56^\circ 19'}}\)

Do đó \(BC = \frac{{4\sqrt {26} .\sin 45^\circ }}{{\sin 56^\circ 19'}} \approx 17,33\) (m).

Giá trị này gần với 17,5 (m)

Vậy ta chọn phương án A.

Copyright © 2021 HOCTAP247