Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50° và 40° so với phương nằ...

Câu hỏi :

Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50° và 40° so với phương nằm ngang.

A. 12 m;

B. 19 m;

C. 24 m;

D. 29 m.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có \(\widehat {BAC} + \widehat {CAD} = \widehat {BAD} = 50^\circ \)

Do đó \(\widehat {BAC} = 50^\circ - \widehat {CAD} = 50^\circ - 40^\circ = 10^\circ \).

∆ABD có: \(\widehat {ABD} + \widehat {BAD} + \widehat {ADB} = 180^\circ \) (định lí tổng ba góc trong một tam giác)

\( \Rightarrow \widehat {ABD} = 180^\circ - \left( {\widehat {BAD} + \widehat {ADB}} \right) = 180^\circ - \left( {50^\circ + 90^\circ } \right) = 40^\circ \).

Áp dụng định lí sin cho ∆ABC, ta được \(\frac{{AC}}{{\sin \widehat {ABC}}} = \frac{{BC}}{{\sin \widehat {BAC}}}\)

Suy ra \[AC = \frac{{BC.\sin \widehat {ABC}}}{{\sin \widehat {BAC}}} = \frac{{5.\sin 40^\circ }}{{\sin 10^\circ }} \approx 18,5\] (m)

∆ACD vuông tại D: \(\sin \widehat {CAD} = \frac{{CD}}{{AC}}\).

Suy ra \(CD = AC.\sin \widehat {CAD} \approx 18,5.\sin 40^\circ \approx 11,9\) (m)

Chiều cao của tòa nhà là:

CH = CD + DH = 11,9 + 7 = 18,9 (m)

Giá trị này gần với 19 m nhất.

Vậy ta chọn phương án B.

Copyright © 2021 HOCTAP247