A. \(T = \frac{9}{2}.\)
B. \(T = - \frac{3}{2}.\)
C. \(T = \frac{1}{2}.\)
D. \(T = \frac{3}{2}.\)
C
Ta có: \(- \frac{b}{{2a}} = \frac{m}{2}\)
TH1: Nếu \(\frac{m}{2} < - 2 \Leftrightarrow m < - 4\)
Thì \(\mathop {\min }\limits_{\left[ { - 2;0} \right]} y = 3 = f\left( { - 2} \right)\)
\(\begin{array}{l}
\Leftrightarrow 3 = 16 + 8m + 8m + {m^2} - 2m\\
\Leftrightarrow {m^2} + 6m + 16 = 0\,\,\left( {VN} \right)
\end{array}\)
TH2: Nếu \(\frac{m}{2} > 0 \Leftrightarrow m > 0\) thì
\(\begin{array}{l}
\mathop {\min }\limits_{\left[ { - 2;0} \right]} y = 3 = f\left( 0 \right)\\
\Leftrightarrow {m^2} - 2m = 3\\
\Leftrightarrow \left[ \begin{array}{l}
m = 3\left( n \right)\\
m = - 1\,\left( l \right)
\end{array} \right.
\end{array}\)
TH3: \( - 2 \le \frac{m}{2} \le 0 \Leftrightarrow - 4 \le m \le 0\)
\(\mathop {\min }\limits_{\left[ { - 2;0} \right]} y = 3 = f\left( {\frac{m}{2}} \right)\)
\(\begin{array}{l}
\Leftrightarrow 4{\left( {\frac{m}{2}} \right)^2} - 4m.\frac{m}{2} + {m^2} - 2m = 3\\
\Leftrightarrow m = - \frac{3}{2}
\end{array}\)
Suy ra \(S = \left\{ { - \frac{3}{2};3} \right\}\)
Do đó \(T = 3 - \frac{3}{2} = \frac{3}{2}\)
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247