Tìm số nghiệm của các phương trình \(\frac{{{x^2}}}{{\sqrt {x - 2} }} = \frac{1}{{\sqrt {x - 2} }} - \sqrt {x - 2} .\)

Câu hỏi :

Tìm số nghiệm của các phương trình \(\frac{{{x^2}}}{{\sqrt {x - 2} }} = \frac{1}{{\sqrt {x - 2} }} - \sqrt {x - 2} .\)

A. 1 nghiệm duy nhất

B. vô nghiệm.

C. 3 nghiệm 

D. 5 nghiệm

* Đáp án

B

* Hướng dẫn giải

ĐKXĐ: \({\rm{x}} > 2\)

Với điều kiện đó phương trình tương đương với

\({x^2} = 1 - \left( {x - 2} \right) \Leftrightarrow {x^2} + x - 3 = 0 \Leftrightarrow x = \frac{{ - 1 \pm \sqrt {13} }}{2}\)

Đối chiếu với điều kiện ta thấy không có giá trị nào thỏa mãn

Vậy phương trình vô nghiệm.

Copyright © 2021 HOCTAP247