Tìm giá trị thực của tham số m để phương trình |x|+1=x^2+m có nghiệm duy nhất.

Câu hỏi :

Tìm giá trị thực của tham số \(m\) để phương trình \(\left| x \right| + 1 = {x^2} + m\) có nghiệm duy nhất.

A. \(m = 0.\)

B. \(m = 1.\)

C. \(m =  - 1.\)

D. Không có \(m.\)

* Đáp án

D

* Hướng dẫn giải

Phương trình \( \Leftrightarrow {\left| x \right|^2} - \left| x \right| + \left( {m - 1} \right) = 0\)

Đặt \(t = \left| x \right|,\;t \ge 0\), phương trình trở thành \({t^2} - t + m - 1 = 0\;\;\;\;\left(  *  \right)\)

Phương trình đã cho có nghiệm duy nhất \( \Leftrightarrow \) \(\left(  *  \right)\) có nghiệm duy nhất \(t = 0\).

Với \(t = 0\) là nghiệm của phương trình \(\left(  *  \right) \Rightarrow {0^2} - 0 + m - 1 = 0 \Leftrightarrow m = 1\).

Thử lại, thay \(m = 1\) vào phương trình \(\left(  *  \right)\), thấy phương trình có 2 nghiệm \(t = 0\) và \(t = 1\): Không thỏa mãn. 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Chương 3 Bài 2

Số câu hỏi: 16

Copyright © 2021 HOCTAP247