A. \(\left[ \begin{array}{l} x + y - 4 = 0\\ x - y - 2 = 0 \end{array} \right.\)
B. \(\left[ \begin{array}{l} x = 5\\ y = - 1 \end{array} \right.\)
C. \(\left[ \begin{array}{l} 2x - y - 3 = 0\\ 3x + 2y - 2 = 0 \end{array} \right.\)
D. \(\left[ \begin{array}{l} 3x - 2y - 2 = 0\\ 2x + 3y + 5 = 0 \end{array} \right.\)
B
(C) có tâm I(2;2), bán kính R = 3.
Đường thẳng qua A(5;-1) có véc tơ pháp tuyến \(\overrightarrow {\,n\,} = \left( {a;b} \right)\left( {{a^2} + {b^2} \ne 0} \right)\) có phương trình dạng \(\Delta :ax + by - 5a + b = 0\).
\(\Delta\) là tiếp tuyến của \(\left( C \right) \Leftrightarrow d\left( {I;\Delta } \right) = R\).
\( \Leftrightarrow \frac{{\left| { - 3a + 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 3 \Leftrightarrow \left| {b - a} \right| = \sqrt {{a^2} + {b^2}} \Leftrightarrow 2ab = 0 \Leftrightarrow \left[ \begin{array}{l} a = 0\\ b = 0 \end{array} \right.\).
Vậy phương trình tiếp tuyến cần tìm là \(\left[ \begin{array}{l} x = 5\\ y = - 1 \end{array} \right.\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247