Cho hình chóp SABCD có SA vuông góc với mặt đáy và đáy ABCD

Câu hỏi :

A. 1261a61

A. 1261a61

B. 61a12

C. 1241a41

D. 41a12

* Đáp án

* Hướng dẫn giải

Cho hình chóp SABCD có SA vuông góc với mặt đáy và đáy ABCD   (ảnh 1)

Ta có: SA=SB2AB2=5a24a2=3a
Cách 1:
Ta có dC,SBD=dA,SBD=h.
Tứ diện ASBD có các cạnh AB,AD,AS đôi một vuông góc với nhau và AB=4a,AD=3a,AS=3a nên ta có
1h2=1AB2+1AD2+1AS2=116a2+19a2+19a2=41144a2h=12a4141
Vậy dC,SBD=12a4141.
Cách 2:
Đặt hình chóp S.ABCD vào một hệ trục tọa độ Oxyz sao cho AO, AB nằm trên tia Ox, AD nằm trên tia Oy, AS nằm trên tia Oz. Các đỉnh của hình chóp có tọa độ là:
A0;0;0, B4a;0;0, C4a;3a;0, D0;3a;0, S0;0;3a
Sử dụng phương trình mặt phẳng đoạn chắn, ta có phương trình mặt phẳng SBD là:
x4a+y3a+z3a=13x+4y+4z12a=0
Sử dụng công thức khoảng cách từ điểm C đến mặt phẳng (SBD) ta có:
dC;  SBD=12a+12a12a42+32+42=12a41=1241a41.
Chọn đáp án C

Copyright © 2021 HOCTAP247