Chọn ngẫu nhiên một số tự nhiên A có 4 chữ số. Gọi N là số thỏa mãn 3^N=A

Câu hỏi :

Chọn ngẫu nhiên một số tự nhiên A có 4 chữ số. Gọi N là số thỏa mãn \[{3^N} = A.\] Xác suất để N là số tự nhiên bằng

A.\[\frac{1}{{4500}}\]

B.\[\frac{1}{{3500}}\]

C.\[\frac{1}{{2500}}\]

D.\[\frac{1}{{3000}}\]

* Đáp án

* Hướng dẫn giải

Chọn đáp án A

Có tất cả 9.10.10.10 = 9000 số tự nhiên có 4 chữ số.

Ta có \[{3^N} = A \Rightarrow N = {\log _3}A\].

Để Nlà số tự nhiên thì \(A = {3^m}\left( {m \in \mathbb{N}} \right)\).

Với \(0 \le m \le 6 \Rightarrow A \le {3^6} = 729\) Loại vì A có 4 chữ số.

Với \(\left[ \begin{array}{l}n = 7 \Rightarrow A = 2187\\n = 8 \Rightarrow A = 6561\end{array} \right.\) thỏa mãn nên có 2 số thỏa mãn.

\(n = 9 \Rightarrow A = 19683\) Loại vì A có 4 chữ số.

Vậy xác suất cần tìm là \[\frac{2}{{9000}} = \frac{1}{{4500}}\].

Copyright © 2021 HOCTAP247