Xét các số phức z1=x-2+(y+2)i; z2=x+yi(x,y thuộc R, |z1|=1

Câu hỏi :

A. -5

A. -5

B. 2+22

C. 222.

D. 3

* Đáp án

* Hướng dẫn giải

Xét các số phức z1=x-2+(y+2)i; z2=x+yi(x,y thuộc R, |z1|=1 (ảnh 1)
Gọi M(x;y) là điểm biểu diễn cho số phức z2
Ta có:
z1=1x2+(y+2)i=1x22+y+22=1T.
Đường tròn (T) có tâm I2;2, bán kính R=1, có OI=(2)2+22=22
Khi đó tập hợp điểm biểu diễn số phức z2 là đường tròn (C) có tâm O, bán kính OM.
Bài yêu cầu: Tìm số phức z2 có: z2=x2+y2 lớn nhất.
Bài toán trở thành: Tìm vị trí điểm M(x;y)(C) sao cho OM max
OM=OI+R=22+1.
OMOI=22+122=1+122
OM=1+122OIxM=1+122xIyM=1+122yI
yM=1+1222=222=2+22
Chọn đáp án B

Copyright © 2021 HOCTAP247