Cho số phức z thỏa mãn (2+3i)*z-(1+2i)*z ngang=7-i . Tìm môđun của z.

Câu hỏi :

Cho số phức z thỏa mãn \(\left( {2 + 3i} \right)z - \left( {1 + 2i} \right)\overline z = 7 - i\). Tìm môđun của z.

A. \(\left| z \right| = 1\)                                 

B. \(\left| z \right| = 2\) 

C. \(\left| z \right| = \sqrt 2 \)                               

D. \(\left| z \right| = \sqrt 5 \)

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Giả sử \(z = a + bi{\rm{ }}\left( {a,b \in \mathbb{R}} \right) \Rightarrow \overline z = a - bi\). Ta có \(\left( {2 + 3i} \right)z - \left( {1 + 2i} \right)\overline z = 7 - i\)

\( \Leftrightarrow \left( {2 + 3i} \right)\left( {a + bi} \right) - \left( {1 + 2i} \right)\left( {a - bi} \right) = 7 - i \Leftrightarrow a - 5b + \left( {a + 3b} \right)i = 7 - i \Rightarrow \left\{ \begin{array}{l}a - 5b = 7\\a + 3b = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\).

Khi đó ta có \(z = 2 - i \Rightarrow \left| z \right| = \sqrt {{2^2} + {1^2}} = \sqrt 5 \).

Copyright © 2021 HOCTAP247