Cho khối cầu (S) tâm I, bán kính R không đổi. Một khối trụ thay đổi có chiều cao h

Câu hỏi :

Cho khối cầu \(\left( S \right)\) tâm I, bán kính R không đổi. Một khối trụ thay đổi có chiều cao h và bán kính đáy r nội tiếp khối cầu. Tính chiều cao h theo R sao cho thể tích của khối trụ lớn nhất.


A. \(h = \frac{{2R\sqrt 3 }}{3}\)                 


B. \(h = \frac{{R\sqrt 2 }}{2}\)

C. \(h = \frac{{R\sqrt 3 }}{3}\)                    

D. \(h = R\sqrt 2 \)

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Gọi r, h lần lượt là bán kính đáy và chiều cao của khối trụ.

Vì khối trụ nội tiếp khối cầu \( \Rightarrow {R^2} = {r^2} + {\left( {\frac{h}{2}} \right)^2} \Leftrightarrow {r^2} = {R^2} - \frac{{{h^2}}}{4}\).

Thể tích của khối trụ là \(V = \pi {r^2}h = \pi h\left( {{R^2} - \frac{{{h^2}}}{4}} \right) = \frac{\pi }{4}.h\left( {4{{\rm{R}}^2} - {h^2}} \right)\).

Xét hàm số \(f\left( h \right) = 4{{\rm{R}}^2}h - {h^3}\) với \(h \in \left( {0;2{\rm{R}}} \right)\), có \(f'\left( h \right) = 4{{\rm{R}}^2} - 3{h^2} = 0 \Leftrightarrow h = \frac{{2R}}{{\sqrt 3 }}\).

Lập bảng biến thiên, ta được \(f\left( h \right)\) đạt GTLN khi và chỉ khi \(h = \frac{{2{\rm{R}}\sqrt 3 }}{3}\).

Copyright © 2021 HOCTAP247