Trong không gian Oxyz, cho ba điểm A(1;0;0) B(0;2;0)

Câu hỏi :

Trong không gian Oxyz, cho ba điểm \[A\left( {1;0;0} \right)\], \[B\left( {0;2;0} \right)\], \[C\left( {0;0;3} \right)\]. Tập hợp các điểm M thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bằng

A. 2.                       

B. \[\sqrt 3 .\]          

C. 3.                       

D. \[\sqrt 2 .\]

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Giả sử \(M\left( {x;y;z} \right).\)

Ta có \(M{A^2} = {\left( {x - 1} \right)^2} + {y^2} + {z^2}\); \(M{B^2} = {x^2} + {\left( {y - 2} \right)^2} + {z^2}\); \(M{C^2} = {x^2} + {y^2} + {\left( {z - 3} \right)^2}\)

Khi đó \(M{A^2} = M{B^2} + M{C^2} \Leftrightarrow {\left( {x - 1} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y - 2} \right)^2} + {z^2} + {x^2} + {y^2} + {\left( {z - 3} \right)^2}\)

\( \Leftrightarrow 1 - 2x = {x^2} + {y^2} + {z^2} - 4y - 6z + 13 \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 2.\)

Tập hợp các điểm M thỏa mãn \(M{A^2} = M{B^2} + M{C^2}\) là mặt cầu có tâm \(I\left( { - 1;2;3} \right)\) và bán kính \(R = \sqrt 2 .\)

Copyright © 2021 HOCTAP247