A. \(f(3) = 22\)
B. \(f(3) = 30\)
C. \(f(3) = 10\)
D. \(f(3) = 6\)
A. \(f(x) = 3x + 5\cos x + 9\)
B. \(f(\pi ) = 3\pi + 5\)
C. \(f(\frac{\pi }{2}) = \frac{{3\pi }}{2}\)
D. \(f(x) = 3x - 5\cos x + 9\)
A. \(a + 2b = - 7\)
B. \(a - 2b = 15\)
C. \(a + b = 8\)
D. \(2a + b = 11\)
A. 4
B. 6
C. 8
D. 2
A. \(F(x) = {e^x} + 3{e^{ - x}} + C\)
B. \(F(x) = {e^x} - 3{e^{ - 3x}} + C\)
C. \(F(x) = {e^x}(x + 3{e^{ - x}}) + C\)
D. \(F(x) = {e^x} - 3{e^{ - x}} + C\)
A. \(V = \sqrt 3 \)
B. \(V = \frac{{\pi \sqrt 3 }}{2}\)
C. \(V = 2\sqrt 3 \)
D. \(V = 2\pi \sqrt 3 \)
A. \(I=1\)
B. \(I=3\)
C. \(I=2\)
D. \(I=4\)
A. \(I = \frac{{2019}}{2}\)
B. \(I = \frac{2}{{2019}}\)
C. \(I = -\frac{{2019}}{2}\)
D. \(I=2019\)
A. \(P=-4\)
B. \(P=10\)
C. \(P=2\)
D. \(P=4\)
A. \(\int {f'(x)lnxdx} = x\ln x - \frac{{{x^2}}}{2} + C\)
B. \(\int {f'(x)lnxdx} = {x^2}\ln x - x + C\)
C. \(\int {f'(x)lnxdx} = {x^2}\ln x - \frac{{{x^2}}}{2} + C\)
D. \(\int {f'(x)lnxdx} = \frac{{\ln x}}{{{x^3}}} + C\)
A. \(S = \frac{9}{4}.\)
B. \(S = \frac{{81}}{{12}}.\)
C. \(S=13\)
D. \(S = \frac{{37}}{{12}}.\)
A. \(I = \frac{1}{{12}}\int {{t^5}} dt\)
B. \(I = \frac{1}{4}\int {{t^5}} dt\)
C. \(I = \frac{1}{{16}}\int {{t^5}} dt\)
D. \(I = \int {{t^5}} dt\)
A. \(I = 3xF(x) + 2 + C\)
B. \(I = 3xF(x) + 2x + C\)
C. \(I = 3F(x) + 2x + C\)
D. \(I = 3F(x) + 2 + C\)
A. \(V = \frac{{\pi (e - 1)}}{{2e}}\)
B. \(V = \frac{{\pi (2e - 3)}}{{2e}}\)
C. \(V = \frac{{\pi (2e - 1)}}{{2e}}\)
D. \(V = \frac{{\pi (e - 3)}}{{2e}}\)
A. \(I=12\)
B. \(I=5\)
C. \(I=-12\)
D. \(I=18\)
A. \(\int\limits_1^2 {f(x)dx} \)
B. \(-\int\limits_1^2 {f(x)dx} \)
C. \(\int\limits_1^2 {F(x)dx} \)
D. \(-\int\limits_1^2 {F(x)dx} \)
A. \(M = 4042\)
B. \(M = 2021\)
C. \(M = 2020\)
D. \(M = 4041\)
A. \(F(4) = 4\)
B. \(F(4) = 3\)
C. \(F(4) = 5\)
D. \(F(4) = 3 + \ln 2\)
A. \(S = - \int\limits_a^b {f(x)} dx\)
B. \(S = \int\limits_b^a {f(x)} dx\)
C. \(S = \int\limits_a^b {\left| {f(x)} \right|} dx\)
D. \(S = \int\limits_a^b {f(x)} dx\)
A. \(a<b\)
B. \(a>b\)
C. \(a=b\)
D. \(a.b=1\)
A. \(S = \int\limits_{ - 1}^1 {({x^3}} - 3x)dx\)
B. \(S = \left| {\int\limits_{ - 1}^1 {({x^3} - 3x)dx} } \right|\)
C. \(S = \int\limits_{ - 1}^0 {({x^3} - 3x)dx} + \int\limits_0^1 {(3x - {x^3})} dx\)
D. \(S = \int\limits_{ - 1}^0 {(3x - {x^3})dx} + \int\limits_0^1 {({x^3} - 3x)} dx\)
A. \(\int {f(x)dx = } \frac{{{x^2}}}{2} + \frac{{{3^x}}}{{\ln 3}} + C\)
B. \(\int {f(x)dx = } \frac{{{x^2}}}{2} + {3^x}\ln 3 + C\)
C. \(\int {f(x)dx = } \frac{{{x^2}}}{2} + {3^x} + C\)
D. \(\int {f(x)dx = } 1 + \frac{{{3^x}}}{{\ln 3}} + C\)
A. \(I = 2030\)
B. \(I =- 2030\)
C. \(I = -2008\)
D. \(I = 2008\)
A. \(S = \frac{{125}}{6}\,\,\left( {{m^2}} \right)\)
B. \(S = \frac{{250}}{3}{\rm{ }}\left( {{m^2}} \right)\)
C. \(S = \frac{{125}}{4}{\rm{ }}\left( {{m^2}} \right)\)
D. \(S = \frac{{125}}{3}{\rm{ }}\left( {{m^2}} \right)\)
A. \(V = \pi \int\limits_e^\pi {\left| {f(x)} \right|dx} \)
B. \(V = \pi \int\limits_e^\pi {{f^2}(x)dx} \)
C. \(V = \pi \int\limits_e^\pi {f(x)dx} \)
D. \(V = \pi \int\limits_\pi ^e {{f^2}(x)dx} \)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247