Tính diện tích tam giác có ba cạnh lần lượt là 5; 12; 13.
A. 60;
B. 30;
C. 34;
D. \(7\sqrt 5 \)
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
A. 60°;
B. 45°;
C. 30°;
D. 120°.
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
A. \(\frac{{\sqrt 6 }}{3}\);
B. \(\sqrt 6 \);
C. \(\frac{{\sqrt 6 }}{2}\);
D. \(2\sqrt 6 \).
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
A. \(\frac{{3\sqrt 6 }}{2}\);
B. \(\frac{{3\sqrt 2 }}{2}\);
C. \(\sqrt 6 \);
D. \(\frac{{2\sqrt 6 }}{3}\).
Tam giác ABC có tổng hai góc B và C bằng 135° và độ dài cạnh BC bằng a. Tính bán kính đường tròn ngoại tiếp tam giác.
A. \(\frac{{a\sqrt 2 }}{2}\);
B. \(a\sqrt 2 \);
C. \(\frac{{a\sqrt 3 }}{2}\);
D. \(a\sqrt 3 \).
Tam giác ABC có A = 120° khẳng định nào sau đây đúng?
A. a2 = b2 + c2 – 3bc;
B. a2 = b2 + c2 + bc;
C. a2 = b2 + c2 + 3bc;
D. a2 = b2 + c2 – bc.
Trong tam giác ABC, hệ thức nào sau đây sai?
A. \[a = \frac{{b.\sin A}}{{\sin B}}\];
B. \[\sin C = \frac{{c.\sin A}}{a}\];
C. a = 2R.sinA;
D. b = R.tanB.
Tính diện tích tam giác ABC biết A = 60°; b = 10; c = 20.
A. \[50\sqrt 3 \];
B. 50;
C. \[50\sqrt 2 \];
D. \[50\sqrt 5 \].
Cho tam giác ABC có a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.
A. \[\sqrt 2 \];
B. \[\frac{{\sqrt 2 }}{2}\];
C. \(\frac{{\sqrt 2 }}{3}\);
D. \(\sqrt 3 \)
Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn nội tiếp tam giác đó có bán kính r bằng
A. 1 cm;
B. \(\sqrt 2 \) cm;
C. 2 cm;
D. 3 cm.
Hình bình hành ABCD có AB = a; \(BC = a\sqrt 2 \) và \(\widehat {BAD} = 45^\circ \). Khi đó hình bình hành có diện tích bằng
A. 2a2;
B. \({a^2}\sqrt 2 \);
C. a2;
D. \({a^2}\sqrt 3 \).
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
A. C = 150°;
B. C = 120°;
C. C = 60°;
D. C = 30°.
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
A. 1200;
B. 300;
C. 450;
D. 600.
Tam giác ABC có AB = 7; AC = 5 và \(\cos \left( {B + C} \right) = - \frac{1}{5}\). Tính BC
A. \(2\sqrt {15} \);
B. \(4\sqrt {22} \);
C. \(4\sqrt {15} \);
D. \(2\sqrt {22} \).
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
A. \(\sqrt {43} \);
B. \(2\sqrt {13} \);
C. 8;
D. \(8\sqrt 3 \).
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247