Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh. Tính xác suất để 3 đỉnh

Câu hỏi :

Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh. Tính xác suất để 3 đỉnh đó là 3 đỉnh của một tam giác vuông không cân

A. 2/35

B. 8/57

C. 17/114

D. 3/19

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Để các tam giác đó là các tam giác vuông thì cạnh huyền của tam giác đó phải là đường kính của đường tròn.

Với mỗi đường kính của đường tròn (giả sử là AB), có thể nối với 16 đỉnh để tạo thành các tam giác vuông không cân (không nối với CD) (hình vẽ).

Mà có tất cả 10 đường kính, như vậy số tam giác thỏa mãn đề bài là: 10*6=60

Xác suất cần tính là 

160C203=857

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

ĐỀ THI THỬ THPT QUỐC GIA NĂM HỌC 2019 MÔN TOÁN !!

Số câu hỏi: 948

Copyright © 2021 HOCTAP247