Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục tọa độ Ox

Câu hỏi :

Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại ba điểm A, B, C khác gốc tọa độ O sao cho biểu thức 1OA2+1OB2+1OC2 có giá trị nhỏ nhất.

* Đáp án

B

* Hướng dẫn giải

Chọn B

Xét tứ diện vuông OABC, gọi H là hình chiếu vuông góc của O lên (ABC). Dễ thấy H là trực tâm của tam giác ABC. Khi đó

có giá trị nhỏ nhất khi OH đạt giá trị lớn nhất.

Mặt khác OH≤OM và độ dài OM là không đổi. Do đó OH đạt giá trị lớn nhất bằng OM.

Điều này xảy ra khi H≡M Khi đó (P) là mặt phẳng qua M và có một vecto pháp tuyến là OM=1;2;3 nên phương trình mặt phẳng (P) là

Copyright © 2021 HOCTAP247