Cho đa giác đều có 14 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong số 14 đỉnh của đa giác

Câu hỏi :

Cho đa giác đều có 14 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong số 14 đỉnh của đa giác. Tìm xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông.

A. 2/13

B. 5/13

C. 4/13

D. 3/13

* Đáp án

D

* Hướng dẫn giải

Chọn D.

Chọn ngẫu nhiên 3 đỉnh trong 14 đỉnh của đa giác => có C143=364 cách.

Suy ra số phần tử của không gian mẫu là nΩ=364.

Gọi X là biến cố “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông

Gọi O là tâm đường tròn ngoại tiếp đa giác đều => có 7 đường kính đi qua O.

Xét một đường kính bất kì, mỗi đỉnh còn lại sẽ tạo với đường kính một tam giác vuông.

Khi đó, số tam giác vuông được tạo ra là 7.(6+6)=84=>n(X)=84.

Vậy xác suất cần tính là 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

ĐỀ THI THỬ THPT QUỐC GIA NĂM HỌC 2019 MÔN TOÁN !!

Số câu hỏi: 948

Copyright © 2021 HOCTAP247