Từ các chữ số 0, 1, 2, 3, 5, 8 có thể lập được bao nhiêu số tự nhiên lẻ có bốn

Câu hỏi :

Từ các chữ số 0, 1, 2, 3, 5, 8 có thể lập được bao nhiêu số tự nhiên lẻ có bốn chữ số đôi một khác nhau và phải có mặt chữ số 3 ?

A. 36 số

B. 108 số

C. 228 số

D. 144 số

* Đáp án

* Hướng dẫn giải

Xét hai tập hợp A={0;1;2;3;5;8} và B={0;1;2;5;8}.

Xét số có bốn chữ số đôi một khác nhau với các chữ ố lấy từ tập A.

Gọi số cần tìm có dạng abcd¯ vì abcd¯ là số lẻ →d={1;3;5}

Khi đó, d có 3 cách chọn, a có 4 cách chọn, b có 4 cách chọn và c có 3 cách chọn.

Do đó, có 3.4.4.3=144 số thỏa mãn yêu cầu trên.

Xét số có bốn chữ số đôi một khác nhau với các chữ số lấy từ tập B.

Gọi số cần tìm có dạng abcd¯ vì abcd¯ là số lẻ →d={1;5}

Khi đó, d có 2 cách chọn, a có 3 cách chọn, b có 3 cách chọn và c có 2 cách chọn.

Do đó, có 2.3.3.2=36 số thỏa mãn yêu cầu trên.

Vậy có tất cả 144-36=108 số cần tìm.

Chọn đáp án B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ đề thi thử thpt quốc gia môn Toán cực hay !!

Số câu hỏi: 1000

Copyright © 2021 HOCTAP247