Một bình đựng nước dạng hình nón (không có đáy) đựng đầy nước

Câu hỏi :

Khi cắt hình nón có chiều cao 16 cm và đường kính đáy 24 cm bởi một mặt phẳng song song với đường sinh của hình nón ta thu được thiết diện có diện tích lớn nhất gần với giá trị nào sau đây?

A. 170

B. 260

C. 294

D. 208

* Đáp án

* Hướng dẫn giải

Khi cắt hình nón bởi mặt phẳng song song với đường sinh của hình nón thì ta được thiết diện là một parabol.

Giả sử thiết diện như hình vẽ.

Khi đó ta luôn có ABMH 

Kẻ HE / /SA trong mặt phẳng (SAB) 

Khi đó SA//(HME) 

Đặt BH=x(0<x<24), ta có

SA=SO2+OA2=162+122=20cm 

Xét tam giác AMB vuông tại M

MH2=AH.BH=x24-xMH=x24-x

(hệ thức lượng trong tam giác vuông).

Xét tam giác SAB có HE//SA

BHAB=HESEHE=x.2024=56x 

Thiết diện parabol có chiều cao HE=56x và bán kính r=MH=x(24-x) 

Diện tích thiết diện là

207,8cm2

Dấu = xảy ra khi x=72-3xx=18(tm)

Vậy diện tích lớn nhất của thiết diện là S207,8cm2

Chọn đáp án D.

Copyright © 2021 HOCTAP247