Có bao nhiêu giá trị nguyên của m để phương trình 9.3^2x -m(4.(căn bậc 4(x^2 +2x+1))+3m+3).3^x +1=0

Câu hỏi :

Có bao nhiêu giá trị nguyên của m để phương trình 9.32x-m4x2+2x+14+3m+3.3x+1 =0 có đúng 3 nghiệm thực phân biệt

A. Vô số

B. 3

C. 1

D. 2

* Đáp án

* Hướng dẫn giải

Ta có

9.32x-m(4x2+2x+14+3m+3).3x+1=03x+1+13x+1-m34x+1+3m+3=01

Đặt t=x+1, phương trình (1) thành

3t+13t-m34x+1+3m+3=02

Bài toán trở thành tìm số giá trị nguyên của m để phương trình (2) có đúng 3 nghiệm thực phân biệt.

Nhận xét: Nếu t0 là một nghiệm của phương trình (2) thì -t0 cũng là một nghiệm của phương trình (2). Do đó điều kiện cần để phương trình (2) có đúng 3 nghiệm thực phân biệt là phương trình (2) có nghiệm t=0.

Với t=0 thay vào phương trình (2) ta có

-m2-m+2=0[m=1m=-2

Thử lại:

+) Với m=-2 phương trình (2) thành 3t+13t+234t-3=0

Ta có 3t+13t2,t 234t-3=0,t suy ra 3t+13t+234t-3=00,t

Dấu bằng xảy ra khi t=0, hay phương trình (2) có nghiệm duy nhất t=0 nên loại m=-2 

+) Với m=1 phương trình (2) thành 3t+13t+134t+6=0(3)

Dễ thấy phương trình (3) có 3 nghiệm t=-1,t=0,t=1 

Ta chứng minh phương trình (3) chỉ có 3 nghiệm t=-1,t=0,t=1.Vì t là nghiệm thì -t cũng là nghiệm phương trình (3) nên ta chỉ xét phương trình (3) trên [0;+)

Trên tập [0;+),(3) 3t+13t+134t+6=0 

Xét hàm f'(x)=3t+13t+134t+6 trên [0;+)

Ta có

f'(t)=3tln3-3-t.ln3-23t,f''(t)=3tln23+3-t.ln23+13.t3>0,t>0

Suy ra f '(t) đồng biến trên (0;+)f'(t)=0 có tối đa 1 nghiệm t>0f(t)=0 có tối đa 2 nghiệm t[0;+). Suy ra trên [0;+), phương trình (3) có 2 nghiệm t=0, t=1 

Do đó trên tập , phương trình (3) có đúng 3 nghiệm t=-1,t=0,t=1. Vậy chọn m=1   

Chú ý: Đối với bài toán trắc nghiệm này, sau khi loại được m=-2 ta có thể kết luận đáp án C do đề  không có phương án nào là không tồn tại m.

Chọn đáp án C.

Copyright © 2021 HOCTAP247