Cho hàm số y=f(x) có đạo hàm f’(x)=x^2 (x-1)(x^2 -1)^3. Số điểm cực trị của hàm số

Câu hỏi :

Cho hàm số y=f(x) có đạo hàm f(x)=x2(x-1)(x2-1)3. Số điểm cực trị của hàm số đã cho là

A. 2

B. 1

C. 8

D. 3

* Đáp án

* Hướng dẫn giải

Chọn đáp án B

Phương pháp

Số điểm cực trị của hàm số y=f(x) là số nghiệm bội lẻ của phương trình f’(x)=0.

Cách giải

Tuy nhiên x=0 là nghiệm bội 2, x=1 là nghiệm bội 4 của phương trình f’(x)=0, do đó chúng không là cực trị của hàm số. Vậy hàm số có duy nhất 1 điểm cực trị x=-1.

Chú ý: HS nên phân tích đa thức f’(x) thành nhân tử triệt để trước khi xác định nghiệm, tránh sai lầm khi kết luận x=1 cũng là cực trị của hàm số.

Copyright © 2021 HOCTAP247