Cho hình chóp S.BCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang

Câu hỏi :

Cho hình chóp S.BCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; AD=3BC=3a;AB=a,SA=a3. Điểm I thỏa mãn AD=3AI;M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB , . SC Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).

A. V=πa325

B. V=πa35

C. V=πa3105

D. V=πa355

* Đáp án

C

* Hướng dẫn giải

Chọn C.

Phương pháp:

- Chứng minh tứ giác AEFH nội tiếp, từ đó tìm tâm đường tròn ngoại tiếp tam giác EHF .

- Tìm đỉnh hình nón và tính chiều cao, bán kính đáy rồi suy ra thể tích. 

Cách giải:

Copyright © 2021 HOCTAP247