A. \(\left( { - \infty ;0} \right)\)
B. \(\left( { - 2; + \infty } \right)\)
C. \(\left( { - \infty ;2} \right)\)
D. \(\left( {0; + \infty } \right)\)
A. [-1; 2]
B. (-2; 2)
C. \(\left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\)
D. [-1; 2)
A. \(\left( {\frac{1}{2};3} \right)\)
B. \(\left[ {\frac{1}{2};3} \right)\)
C. \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {3; + \infty } \right)\)
D. \(\left( {3; + \infty } \right)\)
A. sin2a = 2sina
B. sin2a = sina+cosa
C. sin2a = cos2a – sin2a
D. sin2a = 2sinacosa
A. \(\sin ( - \alpha ) < 0\)
B. \(\sin (\pi - \alpha )\)
C. \(\sin (\frac{\pi }{2} - \alpha )\)
D. \(\sin (\pi + \alpha ) < 0\)
A. \(\sqrt 3 \)
B. 1
C. \(\sqrt 10 \)
D. 10
A. 6
B. 8
C. 12
D. 60
A.
\(\left\{ \begin{array}{l}
x = - 2 + 3t\\
y = 1 + 4t
\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}
x = - 2 + t\\
y = 3 - 4t
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
x = - 2 + t\\
y = 3 + 4t
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
x = 3 - 2t\\
y = - 4 + t
\end{array} \right.\)
A. 5
B. \(\frac{{10}}{{\sqrt 2 }}\)
C. 10
D. \(\frac{{10}}{{\sqrt 3 }}\)
A. 4,8
B. \(\frac{1}{{10}}\)
C. \(\frac{1}{{14}}\)
D. \(\frac{{48}}{{\sqrt {14} }}\)
A. \(\sqrt 5 \)
B. 25
C. 2,5
D. 25/2
A. \({x^2} + {\rm{ }}{y^2}{\rm{ + }}4x{\rm{ + }}6y{\rm{ - 8 }} = {\rm{ }}0\)
B. \({x^2} + {\rm{ }}{y^2} + {\rm{ }}4x{\rm{ }} + {\rm{ }}6y{\rm{ }} - {\rm{ }}12{\rm{ }} = {\rm{ }}0\)
C. \({x^2} + {\rm{ }}{y^2}{\rm{ - }}4x{\rm{ - }}6y{\rm{ - 8 }} = {\rm{ }}0\)
D. \({x^2} + {\rm{ }}{y^2}{\rm{ - }}4x{\rm{ - }}6y{\rm{ + 8 }} = {\rm{ }}0\)
A.
\(\left\{ \begin{array}{l}
x = 1 + t\\
y = - t
\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}
x = 1 + t\\
y = 6
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
x = 1 + t\\
y = t
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
x = 1 + t\\
y = - 1
\end{array} \right.\)
A. \(\sin \left( {a + \frac{\pi }{6}} \right) = \sin {\rm{a}} + \frac{1}{2}\)
B. \(\sin \left( {a + \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\sin {\rm{a}} + \frac{1}{2}\cos a\)
C. \(\sin \left( {a + \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\sin {\rm{a - }}\frac{1}{2}\cos a\)
D. \(\sin \left( {a + \frac{\pi }{6}} \right) = \frac{1}{2}\sin {\rm{a - }}\frac{{\sqrt 3 }}{2}\cos a\)
A. 3x - 4y + 14 = 0
B. 3x + 4y - 2 = 0
C. 4x - 3y + 14 = 0
D. 3x - 4y - 14 = 0
A.
\(\left[ \begin{array}{l}
m > 2\\
m < 3
\end{array} \right.\)
B. 2 < m <3
C. 2 ≤ m ≤ 3
D.
\(\left[ \begin{array}{l}
m \ge 2\\
m \le 3
\end{array} \right.\)
A. (0; 28)
B. \(\left( { - \infty ;0} \right) \cup \left( {28; + \infty } \right)\)
C. \(\left( { - \infty ;0} \right] \cup \left[ {28; + \infty } \right)\)
D. [0; 28]
A. \(\left[ { - \frac{4}{3}; + \infty } \right)\)
B. \(\left[ { - \frac{4}{3};4} \right]\)
C. \(\left( { - \infty ;4} \right]\)
D. \(\left( { - \infty ; - \frac{4}{3}} \right] \cup \left[ {4; + \infty } \right)\)
A. \(f\left( x \right) = \left( {x - 2} \right)\left( {{x^2} + 4x + 3} \right)\)
B. \(f\left( x \right) = \left( {x - 1} \right)\left( { - {x^2} + 5x - 6} \right)\)
C. \(f\left( x \right) = \left( {x - 1} \right)\left( {3 - x} \right)\left( {2 - x} \right)\)
D. \(f\left( x \right) = \left( {3 - x} \right)\left( {{x^2} - 3x + 2} \right)\)
A. [-3; 4]
B. \(\left( { - \infty ; - 3} \right)\)
C. \(\left[ {4; + \infty } \right)\)
D. (-3; 4)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247