Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng

Câu hỏi :

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x+y2z+m=0 và mặt cầu (S): x2+y2+zh2x+4y6z2=0. Có bao nhiêu giá trị nguyên của m để mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (T) có chu vi bằng 4π3

A. 3. 

B. 4. 

C. 2. 

D. 1. 

* Đáp án

C

* Hướng dẫn giải

Đáp án C

(S) có tâm I1;2;3 và bán kính R = 4

Gọi H là hình chiếu của I lên (P)

Khi đó IH=dI,P=2.122.3+m22+12+22=m63

Đường tròn (T) có chu vi là 4π3 nên có bán kính là r=4π32π=23.

(P) cắt mặt cầu (S) theo giao tuyến là đường tròn (T) có chu vi bằng 4π3IH=R2r2

m63=1612m6=6m6=6m6=6m=12m=0

Vậy có 2 giá trị nguyên của m thỏa mãn.

Copyright © 2021 HOCTAP247