Trong một hình tứ diện ta tô màu các đỉnh, trung điểm

Câu hỏi :

Trong một hình tứ diện ta tô màu các đỉnh, trung điểm các cạnh, trọng tâm các mặt và trọng tâm tứ diện. Chọn ngẫu nhiên 4 điểm trong số các điểm đã tô màu, xác suất để 4 điểm được chọn có thế tạo thành bốn đỉnh của một tứ diện là

A. 188273

B. 10091365

C. 245273

D. 136195

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Cách 1: Không gian mẫu nΩ=C154.

Tính biến cố bù như sau:

Xét số cách chọn 4 đỉnh không tạo thành tứ diện. Có 2 trường hợp

+ Trường hợp 1: Chọn 3 điểm thẳng hàng, có 25 cách. Chọn điểm còn lại, có 12 cách.

Vậy có 25.12=300 cách.

+ Trường hợp 2: Chọn 4 điểm thuộc 1 mặt mà không có 3 điểm nào thẳng hàng.

– Có 10 mặt chứa 7 điểm: Mỗi mặt 11 cách chọn. Suy ra có 110 cách.

– Có 15 mặt chứa 5 điểm, mỗi mặt 1 cách chọn. Suy ra có 15 cách.

Tổng 300+110+15=425 cách.

Vậy xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện là 1425C154=188273.

Cách 2: Mặt phẳng chứa 1 đỉnh của tứ diện và 1 đường trung bình của mặt đối diện, suy ra có 5 điểm thuộc mỗi mặt (đỉnh, 2 trung điểm, cạnh và 2 trọng tâm) và có 12 mặt loại này. Vậy có 12C54 (bộ).

Vậy xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện là 16.C74+4C74+3C54+12C54C154=188273.

Copyright © 2021 HOCTAP247