Hàm số y = f(x) có f(−2) = f(2) = 0 và y = f’(x) như hình vẽ

Câu hỏi :

Hàm số y = f(x) có f(−2) = f(2) = 0 và y = f’(x) như hình vẽ. Hàm số gx=f3x2 nghịch biến trên khoảng nào?

A. 2;2.

B. 1;2.

C. 2;5.

D. 5;+.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có g'x=2f3xf'3x.

Lập bảng biến thiên của hàm số y = f(x) như sau:

Hàm số y = f(x) có f(−2) = f(2) = 0 và y = f’(x) như hình vẽ (ảnh 2)

Khi đó ta thấy rằng phương trình f(x) = 0 có nghiệm kép không được chọn và bản thân phương trình f(3−x) = 0 cũng thế.

Do vậy f'3x=03x=23x=13x=2x=5x=2x=1.

Lập trục xét dấu: 

Hàm số y = f(x) có f(−2) = f(2) = 0 và y = f’(x) như hình vẽ (ảnh 3)

Từ trục xét dấu, suy ra hàm số g(x) nghịch biến trên các khoảng (−∞;1) và (2;5).

Copyright © 2021 HOCTAP247