Trong không gian Oxyz, cho hai điểm A(4;2;−6), B(2;4;1). Gọi d

Câu hỏi :

Trong không gian Oxyz, cho hai điểm A(4;2;−6), B(2;4;1). Gọi d là đường thẳng đi qua trọng tâm tam giác ABO sao cho tổng khoảng cách từ A, B đến d là lớn nhất. Trong các vectơ sau, vectơ nào là một vectơ chỉ phương của đường thẳng d?

A. u=13;8;6.

B. u=13;8;6.

C. u=13;8;6.

D. u=13;8;6.

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta gọi AE và BF lần lượt là khoảng cách từ các điểm A, B tới đường thẳng d và gọi G là trọng tâm của tam giác ABO.

Khi đó AE+BFAG+BG. Do vậy giá trị lớn nhất của tổng khoảng cách giữa hai điểm A, B tới đường thẳng d là AG+BG và đẳng thức xảy ra khi và chỉ khi d là đường thẳng qua G đồng thời vuông góc với AG, BG.

Do vậy ud=AG,BG=263;163;4, ta chọn u=13;8;6

Trong không gian Oxyz, cho hai điểm A(4;2;−6), B(2;4;1). Gọi d (ảnh 1)

Copyright © 2021 HOCTAP247