Trong không gian Oxyz, cho đường thẳng d: x-2/1

Câu hỏi :

Trong không gian Oxyz, cho đường thẳng d:x21=y+12=z3 và hai điểm A(2;0;3), B(2;−2;−3). Biết M(a;b;c) điểm thuộc d thỏa mãn MA4+MB4 nhỏ nhất. Giá trị biểu thức 2a+3b+c bằng:

A. -

B. 1. 

C. 0. 

D. 2.

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Gọi I là trung điểm của AB. Khi đó ta có:

MA4+MB4=MA2+MB222MA2.MB2=2MI2+AB2222MI2AB222=4.MI4+2MI2AB2+AB442.MI4+MI2AB2AB48=2.MI4+3MI2AB2+AB48=2MI2+3AB242AB4

Do đó MA4+MB4 đạt giá trị nhỏ nhất khi MI nhỏ nhất  M là hình chiếu vuông góc của I lên d.

Điểm I(2;−1;0). Lấy M2+t;1+2t;3td.IM=t;2t;3t.

IMudIM.ud=0t+4t+9t=0t=0.

Suy ra MI2;1;0. Vậy 2a+3b+c=1

Copyright © 2021 HOCTAP247