Người ta cần làm một hộp theo dạng một khối lăng trụ đều không nắp

Câu hỏi :

Người ta cần làm một hộp theo dạng một khối lăng trụ đều không nắp với thể tích lớn nhất từ một miếng tôn hình vuông có cạnh là 1 mét. Thể tích của hộp cần làm là:

A. V=19m3.

B. V=29m3.

C. V=427m3.

D. V=227m3.

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Người ta cần làm một hộp theo dạng một khối lăng trụ đều không nắp (ảnh 1)

Giả sử mỗi góc ta cắt đi một hình vuông cạnh x(m).

Khi đó chiều cao của hộp là x(m) với 0<x<12 và cạnh đáy của hộp là (1−2x)(m).

Thể tích của hộp là V=x12x2m3.

Xét hàm số fx=x12x2.

Ta có:

f'x=18x+12x2,f'x=0x=16x=12x=160;12

Ta có bảng biến thiên f(x) như sau:

Người ta cần làm một hộp theo dạng một khối lăng trụ đều không nắp (ảnh 2)

Vậy thể tích cần tìm là: V=227m3.

Copyright © 2021 HOCTAP247