Cho các hàm số y = x^2 và y = x^1/2 cùng xét trên có

Câu hỏi :

Cho các hàm số y=x3 và y=x13 cùng xét trên có đồ thị như hình vẽ bên. Gọi các điểm A và B lần lượt nằm trên các đồ thị đó sao cho AOB là tam giác đều. Biết rằng tồn tại hai tam giác như vậy với diện tích lần lượt là S1 và S2 trong đó S1 < S2. Tỷ số S2S1 bằng:

A. 97+563.

B. 7+43.

C. 26+153.

D. 91+403.

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Các đồ thị hàm số y = x3y=x13 cùng xét trên (0;+∞) đối xứng qua đường thẳng y=x.

Do đó gọi Aa;a3,Ba3;a với a > 0, ta có tam giác OAB cân tại O.

Để tam giác đều thì OA=ABa2+a6=2a3a2a64a4+a2=0.

Vì a > 0 nên a2=2±3.

Mặt khác ta có:

SOAB=34OA2=34a2+a6=a43S2S1=a22a122=97+563 

Copyright © 2021 HOCTAP247