Cho phương trình 4 log^2 9 x + m log 1/3 x + 1/6 log

Câu hỏi :

Cho phương trình 4log92x+mlog13x+16log13x+m29=0 (m là tham số). Để phương trình có hai nghiệm x1,x2 thỏa mãn x1x2=3 thì giá trị m thỏa mãn.

A. 1<m<2

B. 3<m<4

C. 0<m<32

D. 2<m<3

* Đáp án

C

* Hướng dẫn giải

Chọn C

Ta có:

4log92x+mlog13x+16log13x+m29=0 x>04log32x2+mlog31x+16log312x+m29=0412log3x2mlog3x13log3x+m29=0

log32xm+13log3x+m29=0 (1).

Đặt t=log3x. Khi đó phương trình (1) t2m+13t+m29=0 (2).

Phương trình đã cho có hai nghiệm x1,x2 thỏa mãn x1x2=3log3x1x2=1 log3x1+log3x2=1t1+t2=1

(với t1=log3x1 và t2=log3x2).

Áp dụng hệ thức Vi-ét cho phương trình (2) ta có t1+t2=1m+13=1m=23.

Vậy 0<m<32 là mệnh đề đúng.

Copyright © 2021 HOCTAP247