Cho hai số thực dương x, y thỏa mãn 4x^2 +3 / căn bậc hai của 2y+1

Câu hỏi :

Cho hai số thực dương x, y thỏa mãn 4x2+32y+1=y+2x. Giá trị nhỏ nhất của biểu thức P=y4x là

A. P=2

B. P=52

C. P=3

D. P=72

* Đáp án

B

* Hướng dẫn giải

Chọn B

Ta có 

4x2+32y+1=y+2x4x3+3x=y+22y+18x3+6x=2y+42y+1

2x3+32x=2y+12y+1+32y+1  (1)

Xét hàm ft=t3+3t trên R.

Ta có f't=3t2+3>0,t Hàm số ft=t3+3t đồng biến trên R.

(1)f2x=f2y+12x=2y+1x=2y+12.

Vậy P=y22y+1=gy với y0;+.

Ta có g'y=122y+1=02y+1=2y=32.

Ta có bảng biến thiên:

Cho hai số thực dương x, y thỏa mãn 4x^2 +3 / căn bậc hai của 2y+1 (ảnh 1)

Từ bảng biến thiên ta có Pmin=min0;+gy=52 khi y=32

Copyright © 2021 HOCTAP247