Cho hàm số y = f(x) = mx^4 +nx^3 +px^2 +qx +r

Câu hỏi :

Cho hàm số y=fx=mx4+nx3+px2+qx+r trong đó m,n,p,q,r. Biết rằng hàm số y = f’(x) có đồ thị như hình vẽ. Tập nghiệm của phương trình f(x) = r có tất cả bao nhiêu phần tử?

A. 3 

B. 4 

C. 5 

D. 6 

* Đáp án

A

* Hướng dẫn giải

Chọn A

Ta đặt y=f'x=kx+2x76x3.

Xét S1=k076x+2x76x3dx=652191552kS2=k763x+2x76x3dx=652191552k.

Do đó: S1=S2=076f'xdx=764f'xdxf0=f3

Lập bảng biến thiên ta suy ra phương trình fx=r=f0 có tất cả 3 nghiệm.

Cho hàm số y = f(x) = mx^4 +nx^3 +px^2 +qx +r (ảnh 2)

Copyright © 2021 HOCTAP247