Cho hình chóp đều S.ABC có AB=2a, khoảng cách từ A đến (SBC) là

Câu hỏi :

Cho hình chóp đều S.ABCAB=2a, khoảng cách từ A đến (SBC) là 3a2. Thể tích hình chóp S.ABC

A. a33

B. a332

C. a336

D. a333

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Gọi M là trung điểm của BCG là trọng tâm ΔABC.

Ta có: SGABCSGBC. Mà AMBC nên BCSAM.

Kẻ AHSM tại H. Suy ra: AHSBC

dA,SBC=AH=3a2.

Ta có: AM=a3, GM=a33.

Đặt SG = x với x > 0.

Ta có: SM=SG2+GM2=x2+a23.

Mặt khác: 

SG.AM=AH.SMx.a3=3a2.x2+a23x2=34x2+a23x24=a24x=a

Lại có SΔABC=2a2.34=3a2.

Vậy VS.ABC=13SΔABC.SG=13.3a2.a=3a33.

Cho hình chóp đều S.ABC có AB=2a, khoảng cách từ A đến (SBC) là (ảnh 1)

Copyright © 2021 HOCTAP247