Trong không gian Oxyz, cho ba điểm A(a;0;0), B(0;b;0)

Câu hỏi :

Trong không gian Oxyz, cho ba điểm Aa;0;0, B0;b;0, C0;0;c. Gọi R, r lần lượt là bán kính mặt cầu ngoại tiếp và mặt cầu nội tiếp tứ diện OABC. Đặt k=Rr. Giá trị nhỏ nhất của k thuộc khoảng nào sau đây?

A. (3;4)

B. (3;4)

C. (1;2)

D. (4;5)

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Gọi OA=aOB=bOC=c, ta có bán kính đường tròn ngoại tiếp R=12a2+b2+c2.

Bán kính đường tròn nội tiếp: r=3VStp=3.abc6ab+bc+ca2+SΔABC

r=abcab+bc+ca+a2b2+b2c2+c2a2Rr=ab+bc+ca+a2b2+b2c2+c2a22abca2+b2+c2a2b2c23+3a2b2c2342abc3a2b2c234

Dấu “=” xảy ra khi a=b=c=3Rr=3+332.

Vậy kmin=3+3324;5.

Copyright © 2021 HOCTAP247