Cho dãy số (un) thỏa mãn u1 = 1, un+1 = căn bậc hai của a un^2

Câu hỏi :

Cho dãy số (un) thỏa mãn u1=1, un+1=aun2+1, n1, a1. Giá trị của biểu thức T=ab bằng bao nhiêu. Biết rằng limu12+u22+...+un22n=b

A. -1

B. -2

C. 1

D. 2

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có

un+1=aun2+1un+12=aun2+1un+1211a=aun211a 

Đặt vn=un211avn+1=avnvn là cấp số nhân với công bội q = a.

Suy ra vn=v1an1=u1211aan1=an1.aa1un2=an1.aa1+11a.

Ta có: 

u12=aa1+11au22=a.aa1+11a.............................un2=an1.aa1+11au12+u22+...+un2=aa11+a+...+an1+11a.n

u12+u22+...+un211a.n=aa1.1an1a.

Khi đó 11a=2a=12b=limaa1.1an1a=2T=1.

Copyright © 2021 HOCTAP247