Trong không gian Oxyz cho các điểm A(1; 1; 1), B(0; 1; 2), C(2; 0; 1)

Câu hỏi :

Trong không gian Oxyz cho các điểm A1;1;1,B0;1;2,C2;0;1 và mặt phẳng P:xy+z+1=0. Gọi điểm N là điểm thuộc (P) sao cho S=2NA2+NB2+NC2 đạt giá trị nhỏ nhất. Độ dài ON bằng

A. 5

B. 384

C. 35

D. 262

* Đáp án

B

* Hướng dẫn giải

Chọn B.

Chọn điểm I sao cho 2IA+IB+IC=0.

Gọi I(a; b; c) suy ra:

IA=1a;1b;1c,IB=a;1b;2c,IC=2a;b;1c.

Do đó: 2IA+IB+IC=021aa2a=021b+1bb=021c+2c+1c=0a=0b=34c=54I0;34;54.

Khi đó: S=2NA2+NB2+NC2=2NI+IA2+NI+IB2+NI+IC2

                                         =4NI2+IA2+IB2+IC2+2NI2IA+IB+IC

                                         =4NI2+IA2+IB2+IC2.

Do I cố định nên IA2+IB2+IC2 không đổi.

Do đó để SminNImin2NIminN là hình chiếu của I lên (P).

Gọi Δ là đường thẳng qua I và vuông góc với PΔ:x=ty=34tz=54+t.

Suy ra N=ΔP.

Xét phương trình 

t34t+54+t+1=03t+32=0t=12.

N12;54;34ON=384.

Copyright © 2021 HOCTAP247