Trong không gian Oxyz, cho A(1; 0; 0), B(0; 1; 0), C(0; 0; 1). Gọi P là mặt phẳng

Câu hỏi :

Trong không gian Oxyz, cho A1;0;0,B0;1;0,C0;0;1. Gọi P là mặt phẳng chứa cạnh BC và vuông góc với (ABC). (C) là đường tròn đường kính BC nằm trong mặt phẳng (P). Gọi S là một điểm bất kì nằm trên (C) khác B, C. Khi đó khoảng cách từ tâm mặt cầu ngoại tiếp tứ diện S.ABC đến mặt phẳng Q:2x3y+z+1=0 

A. 1214

B. 214

C. 114

D. 3214

* Đáp án

C

* Hướng dẫn giải

Chọn C.

Ta có phương trình mặt phẳng ABC x+y+z=1 và 1 vectơ pháp tuyến là n1=1;1;1.

BC=0;1;1. Một vectơ pháp tuyến của (P) là n2=n1,BC=2;1;1.

Suy ra phương trình mặt phẳng (P) là 2xyz+1=0.

Gọi H là trung điểm BC, I là tâm mặt cầu ngoại tiếp tứ diện S.ABC 

ta có H0;12;12 và IH vuông góc với mặt phẳng (P). Như vậy phương trình đường thẳng IH là x=2ty=12tz=12t.

Gọi I2t;12t;12tIH, ta có

IA=IB2t12+t122+t122=2t2+t+122+t122t=16I13;13;13.

 

Khi đó khoảng cách từ I đến mặt phẳng (Q) bằng dI,Q=2.133.13+13+122+32+12=114.

Copyright © 2021 HOCTAP247