Biết đồ thị hàm số y = f(x) = 13x - 9/x^2 + 1 có hai điểm cực trị. Khoảng cách từ gốc tọa độ

Câu hỏi :

A. 9173

A. 9173

B. 9154

C. 18173

D. 18154

* Đáp án

C

* Hướng dẫn giải

Chọn C.

Ta có: y'=13x2+18x+13x2+12.

Giả sử đồ thị hàm số có hai điểm cực trị là Ax1;y1,Bx2;y2.

Khi đó x1,x2 là nghiệm của phương trình y'=013x2+18x+13=0.

Mặt khác, ta có nếu fx=uxvxf'x=u'x.vxux.v'xv2x

f'x=0u'x.vxux.v'x=0uxvx=u'xv'x

Có yCT=uxCTvxCT=u'xCTv'xCT

Áp dụng lý thuyết trên ta có hai điểm cực trị của đồ thị hàm số thuộc đường cong y=13x9'x2+1'=132x.

Do đó: y=13x9'x2+1'=132x.

Tương tự: y1=132x1=1313x12+18x1+132x1=13x1218x12x1=132x19

Nên A, B thuộc đường thẳng d:y=132x9 hay đường thẳng đi qua hai điểm cực trị A, B là d:y=132x913x2y18=0

Vậy dO,AB=18132+22=18173.

Copyright © 2021 HOCTAP247