Xét các số phức z1, z2 thỏa mãn |z1 - 1|^2 - |z1 +2i|^2 = 1

Câu hỏi :

Xét các số phức z1,z2 thỏa mãn z112z1+2i2=1; z23i=5. Giá trị nhỏ nhất của P=z1z2 bằng

A. 5.

B. 355.

C. 25.

D. 255.

* Đáp án

D

* Hướng dẫn giải

Xét các số phức z1, z2 thỏa mãn |z1 - 1|^2  - |z1 +2i|^2 = 1 (ảnh 1)

Gọi z1=x1+iy1,x1,y1,z2=x2+iy2x2,y2 khi đó Mx1;y1,Nx2;y2 là điểm biểu diễn của số phức z1,z2 trong mặt phẳng Oxy

Ta có z112z1+2i2=1x11+iy12x1+iy1+22=1x1+2y1+2=0. Suy ra M thuộc đường thẳng Δ:x+2y+2=0.

Mặt khác z23i=5 suy ra N thuộc đường tròn tâm I(3; 1) bán kính R=5.

Ta có dI,Δ=755Δ không cắt đường tròn.

Khi đó P=z1z2=MNAHMNmin=AH=IHIA=dI,ΔR=7555=255.

Chọn D.

Copyright © 2021 HOCTAP247