Có bao nhiêu số nguyên m để hàm số f(x) = 3x +m căn bậc hai của x^2 + 1

Câu hỏi :

Có bao nhiêu số nguyên m để hàm số fx=3x+mx2+1 đồng biến trên ? 

A. 0                                  

* Đáp án

C

* Hướng dẫn giải

Phương pháp:

- Tính đạo hàm f'(x)

- Để hàm số fx=3x+mx2+1 đồng biến trên  thì f'x0x và bằng 0 tại hữu hạn điểm.

- Chia TH của x cô lập m.

- Giải các bất phương trình: mfxxa;bmmaxa;bfxmfxxa;bmmina;bfx

Cách giải:

TXĐ: D=

Ta có fx=3x+mx2+1f'x=3+mxx2+1.

Để hàm số fx=3x+mx2+1 đồng biến trên  thì f'x0 x và bằng 0 tại hữu hạn điểm.

3+mxx2+10 x3x2+1+mxx2+10 x

 

3x2+1+mx0 xmx3x2+1 x

TH1: x=003 (luôn đúng).

TH2: x>0m3x2+1x=fxmmax0;+fx 1.

TH3: x<0m3x2+1x=fxmmin0;+fx 2.

Xét hàm số fx=3x2+1xx0 ta có f'x=3xx2+1x+3x2+1x2=3x2x2+1>0 x0.

BBT:

Có bao nhiêu số nguyên m để hàm số f(x) = 3x +m căn bậc hai của x^2 + 1 (ảnh 1)

Dựa vào BBT ta thấy 1m3,2m33m3.

Mà mm3;2;1;0;1;2;3.

Vậy có 7 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Chọn C.

Copyright © 2021 HOCTAP247