Cho hình lăng trụ đứng ABC.A'B'C' có AB = AA' = 2a, AC = a, góc BAC = 120 độ

Câu hỏi :

Cho hình lăng trụ đứng ABC.A'B'C' có AB=AA'=2a,AC=a,BAC=1200. Bán kính mặt cầu ngoại tiếp hình chóp ABCC'B' bằng:

A.30a3

B. 10a3

C. 30a10

D. 33a3

A. 0                                  

* Đáp án

A

* Hướng dẫn giải

Phương pháp:

- Mặt cầu ngoại tiếp hình chóp ABCC'B' chính là mặt cầu ngoại tiếp lăng trụ đứng ABC.A'B'C'.

- Sử dụng công thức tính nhanh: Gọi R là bán kính mặt cầu ngoại tiếp lăng trụ, Rday là bán kính đường tròn ngoại tiếp đáy ABC, ta có R=h24+Rday2, với h là chiều cao hình trụ.

- Áp dụng định lí Cosin tính BC 

- Áp dụng định lí sin tính Rday:BCsinBAC=2Rday.

Cách giải:

Cho hình lăng trụ đứng ABC.A'B'C' có AB = AA' = 2a, AC = a, góc BAC = 120 độ (ảnh 1)

Mặt cầu ngoại tiếp hình chóp ABCC'B' chính là mặt cầu ngoại tiếp lăng trụ đứng ABC.A'B'C'

Gọi R là bán kính mặt cầu ngoại tiếp lăng trụ, Rday là bán kính đường tròn ngoại tiếp đáy ABC, ta có R=h24+Rday2, với h là chiều cao lăng trụ.

Ta có: SΔABC=12.AB.AC.sinBAC=12.2a.a.sin1200=3a22.

Áp dụng định lí Cosin trong tam giác ABC ta có BC2=AB2+AC22AB.AC.cosBAC=7a2BC=7a.

Áp dụng định lí Sin trong tam giác ABC ta có: BCsinBAC=2RdayRday=21a3.

Vậy bán kính mặt cầu ngoại tiếp chóp ABCC'B' là: R=h24+Rday2=4a24+7a23=30a3

Chọn A.

Copyright © 2021 HOCTAP247