Cho hàm số u(x) = x + 3/ căn bậc hai của x^2 + 3 và f(x) trong đó đồ thị hàm số

Câu hỏi :

Cho hàm số ux=x+3x2+3 và f(x) trong đó đồ thị hàm số y = f(x) như hình bên. Hỏi có bao nhiêu số nguyên m để phương trình fux=m có đúng 3 nghiệm phân biệt?

A. 0                                  

* Đáp án

B

* Hướng dẫn giải

Phương pháp:

- Lập BBT của hàm số ux=x+3x2+3, xác định sự tương ứng nghiệm xux.

- Đặt t = u(x). Biện luận để phương trình f(t) = m có đúng 3 nghiệm x phân biệt thì cần có nghiệm t thỏa mãn điều kiện gì?

- Dựa vào đồ thị hàm số tìm m để phương trình có nghiệm t thỏa mãn điều kiện vừa biện luận ở trên.

Cách giải:

Xét hàm số ux=x+3x2+3 ta có

u'x=x2+3x+3.xx2+3x2+3

    

 =x2+3x23xx2+3x2+3=33xx2+3x2+3

u'x=0x=1

Ta có BBT:

Cho hàm số u(x) = x + 3/ căn bậc hai của x^2 + 3 và f(x) trong đó đồ thị hàm số (ảnh 2)

Đặt t = u(x), phương trình fux=mft=m.

Do đó để phương trình f(t) = m có đúng 3 nghiệm x phân biệt thì cần phải có 2 nghiệm t phân biệt thỏa mãn t11;12t21;2*.

Dựa vào đồ thị hàm số f(x) ta thấy *m3;0.

Mà mm0;1;2.

Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.

Chọn B.

Copyright © 2021 HOCTAP247