Trong không gian Oxyz, cho mặt cầu (S): x^2 + (y - 2)^2 + (z +3)^2 = 24

Câu hỏi :

Trong không gian Oxyz, cho mặt cầu S:x2+y22+z+32=24 cắt mặt phẳng α:x+y=0 theo giao tuyến là đường tròn (C). Tìm hoành độ điểm M thuộc đường tròn (C) sao cho khoảng cách từ M đến A(6; -10; 3) lớn nhất. 

A. -1

B. -4

C. 2

D. -5

A. 0                                  

* Đáp án

B

* Hướng dẫn giải

Phương pháp:

- Xác định tâm I và bán kính R của mặt cầu (S).

- Gọi H là tâm đường tròn (C), tìm tọa độ điểm H. Gọi K là hình chiếu vuông góc của A lên α, tìm tọa độ điểm K.

- Sử dụng định lí Pytago: AM2=AK2+KM2, chứng minh AMmaxKMmax.

- Sử dụng BĐT tam giác: KMKH+HM, tìm M để KM=KH+HM.

Cách giải:

Trong không gian Oxyz, cho mặt cầu (S): x^2 + (y - 2)^2 + (z +3)^2 = 24 (ảnh 1)

Mặt cầu S:x2+y22+z+32=24 có tâm I(0; 2; -3), bán kính R=26.

Gọi H là tâm đường tròn CIHα.

 Phương trình đường thẳng IH:x=ty=2+tz=3.

Tọa độ điểm H là nghiệm của hệ phương trình x=ty=2+tz=3x+y=0x=ty=2+tz=3t+2+t=0x=1y=1z=3H1;1;3.

Ta có IH=dI;α=0+22=2 Bán kính đường tròn (C) là r=R2IH2=242=22.

Dễ thấy điểm A nằm ngoài mặt cầu (S). Gọi K là hình chiếu vuông góc của A lên α, tương tự như tìm tọa độ điểm H ta tìm được K(8; -8; 3).

Khi đó ta có KH=8+12+812+3+32=322>r.

Áp dụng định lí Pytago ta có: AM2=AK2+KM2, do AK không đổi nên AMmaxKMmax.

Ta cps KMKH+HM (BĐT tam giác), do đó KMmaxHM=KH+HM=322+22=422, khi đó MK=4MH

8xM=41xM8yM=41yM3zM=43zMxM=4yM=4zM=3.

 

Vậy xM=4.

Chọn B.

 

Copyright © 2021 HOCTAP247